МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ в аспирантуру по специальности

2.6.13. Процессы и аппараты химических технологий

Заведующий ОАиД	V#1-> 17/	А.В. Барская
Заведующий кафедрой - руководитель		Е.И. Короткова
отделения на правах кафедры	125	
Руководитель ООП	yr, beny.	Н.С. Белинская

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ПОСТУПАЮЩИХ В АСПИРАНТУРУ

Программа вступительного испытания по специальности 2.6.13. Процессы и аппараты химических технологий предназначена для поступающих в аспирантуру в качестве руководящего учебно-методического документа для целенаправленной подготовки к сдаче вступительного испытания.

Целью проведения вступительных испытаний является оценка знаний, готовности и возможности поступающего к освоению программы подготовки в аспирантуре, к самостоятельному выполнению научной работы, подготовке и защите диссертации на соискание ученой степени кандидата наук. Поступающий в аспирантуру должен продемонстрировать высокий уровень практического и теоретического владения материалом вузовского курса по дисциплинам направления «Химическая технология»: «Основные процессы и аппараты химической технологии», «Физическая химия», «Общая химическая технология», «Макрокинетика химических процессов», «Основы промышленного катализа», «Системный анализ процессов химической технологии», «Моделирование химико-технологических процессов».

СОДЕРЖАНИЕ И СТРУКТУРА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОСТИ 2.6.13. ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКИХ ТЕХНОЛОГИЙ

Вступительное испытание проводится в форме компьютерного тестирования.

Тестирование длится 60 минут без перерывов. Отсчёт времени начинается с момента входа соискателя в тест. Инструктаж, предшествующий тестированию, не входит в указанное время. У каждого тестируемого имеется индивидуальный таймер отсчета. Организаторами предусмотрены стандартные черновики, использование любых других вспомогательных средств запрещено.

Тест состоит из 40 тестовых заданий базовой сложности разных типов: с выбором одного или нескольких верных ответов из 3-8 предложенных, на установление верной последовательности, соответствия, с кратким ответом.

Распределение заданий в тесте по содержанию представлено в Таблице 1.

Структура теста по специальности **2.6.13.** Процессы и аппараты химических технологий

Таблица 1

Модуль теста	Содержательный блок (Контролируемая тема)	Кол-во заданий в билете	Макси- мальный балл за модуль	Весовой коэффициент задания	Итоговый балл
	Классификация процессов химической технологии в зависимости от основных законов, определяющих скорость процесса	1			
	Классификация процессов химической технологии в зависимости от изменения их параметров во времени	1		2,5	
Основные процессы и аппараты химической технологии	Основные понятия в области гидромеханических процессов	1	- 13		100
	Неоднородные системы и методы их разделения	1			
	Гидродинамические режимы движения жидкости и модели гидродинамической структуры потоков	1			
	Основные уравнения гидростатики и гидростатики и гидростатики	1			
	Основы теплообмена	2			
	Виды процессов массопередачи и их движущая сила	2			
	Основы процесса ректификации	2			
	Виды процесса сушки	1			

	Основные показатели химико-технологических процессов	1		
	Теоретические основы химическо-техно-		+	
	логических процессов	2		
ŀ	Классификация химико-технологических		-	
Общая хи-	систем по особенностям технологической			
мическая	топологии и по способу функционирова-	2	8	
технология	ния			
	Классификация химических реакторов и			
	их отличительные особенности	1		
	Классификация химических реакций по			
	фазовому состоянию реагентов и продук-			
	тов и по тепловому эффекту			
	Основные понятия химической термоди-			
	намики	1		
	Термодинамические параметры химиче-		7	
	ских реакций, параметры состояния си-	2		
Φ	стемы, термодинамическая вероятность	2		
Физическая	протекания реакций, состояние равновесия		8	
химия	Основные законы химической термодина-	1		
	мики	1		
	Основные понятия кинетики химических	2		
	реакций	2		
	Закон действующих масс	2		
	Перенос массы и тепла в пористых телах:			
	виды диффузии, макрокинетические обла-			
Макрокине-	сти протекания химических реакций, за-	2	3	
тика хими-	коны, описывающие перенос массы и			
ческих про-	тепла в пористых телах			
цессов	Математическое моделирование химиче-			
	ских процессов,	1		
	протекающих в зерне катализатора			
	Основные понятия промышленного ката-	2		
Основы про-	лиза		4 ,	
мышленного	Основные стадии протекания гомогенного	1	3	
катализа	некаталитического и гетерогенного ката-	1		
C	литического процесса			
Системный	Основные понятия в области анализа и	2		
анализ про-	синтеза химико-технологических систем		4	
цессов хи-	Способы и приемы ресурсосбережения в	2	4	
мической	химико-технологических системах	2		
Технологии Мологиро			+	
Моделиро-				
вание хи-	Типовые модели структуры потоков в ап-	1	1	
логических	паратах непрерывного действия	1	1	
процессов				
продосов	итого:	40	40	
	niulu.	70	- T U	

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Ушева Н.В., Кравцов А.В. Макрокинетика химических процессов и расчет реакторов. Учебное пособие. 2-е изд. Томск: ТПУ, 2013. 100 с.
- 2. Иванчина Э.Д., Чернякова Е.С., Белинская Н.С., Ивашкина Е.Н. Системный анализ процессов и аппаратов химической технологии: учебное пособие. Томск: Изд-во Томского политехнического университета, 2017. 115 с.
- 3. Бесков С.Д. Технохимические расчеты. 4-е изд., перераб. и доп. М.: Высшая школа, 1966. $520~\rm c$.
- 4. Бесков В.С., Сучкова Е.В. и др. Физико-химические закономерности химических процессов. Учебное пособие. Москва: РХТУ им. Д.И. Менделеева, 1999. 37 с.
- 5. Боресков Г.К. Гетерогенный катализ. М.: Наука, 1986. 304 с.

- 6. Дытнерский Ю.И. Процессы и аппараты химической технологии. Часть 1. Теоретические основы процессов химической технологии. Гидромеханические и тепловые процессы и аппараты. Учебник для вузов / Изд. 2-е. В 2-х кн.: М.: Химия, 1995. 400 с.
- 7. Кафаров В.В., Мешалкин В.П. Анализ и синтез химико-технологических систем. Учебник для вузов. М: Химия, 1991. 432 с.
- 8. Крылов О.В. Гетерогенный катализ. «Академкнига», 2004. 679 с.
- 9. Левеншпиль О. Инженерное оформление химических процессов. М.: Химия, 1969. 624 с.
- 10. Касаткин А.Г. Основные процессы и аппараты химической технологии. Учебник для вузов 10-е изд., стереотипное, доработанное. Перепечатано с изд. 1973 г. М.: ООО ТИД «Альянс», 2004. 753 с.
- 11. Кононова Г.Н., Сафонов В.В., Цыганков В.Н. Технологические принципы разработки химико-технологических систем. Учебное пособие. Москва, МИТХТ им. М.В. Ломоносова, 2003. 57 с.
- 12. Багатуров С.А. Курс теории перегонки и ректификации. М.: Гостоптехиздат, 1954. 479 с.
- 13. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. 14 изд. (перепеч. с изд. 1987 г.), М.:Альянс, 2007. –576с.
- 14. Гельперин Н.И. Основные процессы и аппараты химической технологии. М.: Химия, 1981. 812c.
- 15. Руководство к практическим занятиям по лаборатории процессов и аппаратов химической технологии. / Под ред. П.Г. Романкова. 5-е изд. Л.: Химия, 1979. 256 с.
- 16. Косинцев В.И., Михайличенко А.И., Крашенинникова Н.С., Сутягин В.М., Миронов В.М. Основы проектирования химических производств. М.: Академкнига, 2005. 332 с.

ОБРАБОТКА РЕЗУЛЬТАТОВ

Проверка правильности выполнения заданий всех частей производится автоматически по эталонам, хранящимся в системе тестирования.