### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

# «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»



# ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

в аспирантуру по специальности 1.3.9. Физика плазмы

| Заведующий ОАиД                                                | 9#15 33 | А.В. Барская |
|----------------------------------------------------------------|---------|--------------|
| Заведующий кафедрой - руководитель отделения на правах кафедры |         | А.Г. Горюнов |
| Руководитель ООП                                               | en.     | В.Ф. Мышкин  |

### ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ПОСТУПАЮЩИХ В АСПИРАНТУРУ

Программа вступительного испытания по специальности 1.3.9. Физика плазмы предназначена для поступающих в аспирантуру в качестве руководящего учебно-методического документа для целенаправленной подготовки к сдаче вступительного испытания.

Целью проведения вступительных испытаний является оценка знаний, готовности и возможности поступающего к освоению программы подготовки в аспирантуре, к самостоятельному выполнению научной работы, подготовке и защите диссертации на соискание ученой степени кандидата наук. Поступающий в аспирантуру должен продемонстрировать высокий уровень практического и теоретического владения материалом вузовского курса по дисциплинам направления «Физика плазмы»: «Основы плазменно-радиационных технологий», «Плазменные процессы и технологии в ядерно-топливном цикле», «Плазменная утилизация и иммобилизация отходов ядерно-топливного цикла».

# СОДЕРЖАНИЕ И СТРУКТУРА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОСТИ 1.3.9. ФИЗИКА ПЛАЗМЫ

Вступительное испытание проводится в форме компьютерного тестирования.

Тестирование длится 60 минут без перерывов. Отсчёт времени начинается с момента входа соискателя в тест. Инструктаж, предшествующий тестированию, не входит в указанное время. У каждого тестируемого имеется индивидуальный таймер отсчета. Организаторами предусмотрены стандартные черновики, использование любых других вспомогательных средств запрещено.

Тест состоит из 40 тестовых заданий базовой сложности разных типов: с выбором одного или нескольких верных ответов из 3-8 предложенных, на установление верной последовательности, соответствия, с кратким ответом.

Распределение заданий в тесте по содержанию представлено в Таблице 1.

### Структура теста по специальности 1.3.9. Физика плазмы

#### Таблица 1

| Модуль теста                              | Содержательный блок<br>(Контролируемая тема)                                        | Кол-во<br>заданий<br>в би-<br>лете | Макси-<br>мальный<br>балл за<br>модуль | Весовой коэффи-<br>циент задания | Итого-<br>вый<br>балл |
|-------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------|-----------------------|
| Физика плазмы.<br>Физика газового         | Элементарные процессы в плазме                                                      | 2                                  |                                        |                                  |                       |
|                                           | Идеальная и неидеальная плазма                                                      | 2                                  | 16                                     |                                  |                       |
|                                           | Основные свойства плазмы                                                            | 2                                  | 10                                     |                                  |                       |
| разряда                                   | Электрический пробой газов. Типы газовых разрядов                                   | 2                                  |                                        |                                  |                       |
| Физические<br>основы                      | Плазменный синтез молекул. Плазменная обработка порошковых материалов               | 2                                  | 8                                      |                                  |                       |
| плазменных                                | Закалка продуктов плазменных процессов                                              | 2                                  |                                        |                                  |                       |
| технологий.                               | · · · · · · · · · · · · · · · · · · ·                                               |                                    |                                        |                                  |                       |
| Плазмохимия                               | Процесс формирования химически активной плазмы                                      | 2                                  | 1                                      |                                  |                       |
| Взаимодействие плазмы с веществом         | Процессы взаимодействия химически активных ча-                                      | 2                                  |                                        | 2.5                              | 100                   |
|                                           | стиц плазмы с плазмы с поверхностью                                                 | 2                                  |                                        | 2,5                              | 100                   |
|                                           | Основные понятия плазменного травления.                                             | 2                                  | 8                                      |                                  |                       |
|                                           | Распыление поверхности твердых тел под действием ионного пучка                      | 2                                  | ٥                                      |                                  |                       |
|                                           | Поверхность как источник примесей                                                   | 2                                  |                                        |                                  |                       |
| Генераторы плазмы. Вакуумное оборудование | ВЧ-плазмотроны атмосферного давления                                                | 2                                  |                                        |                                  |                       |
|                                           | Дуговые плазмотроны атмосферного давления. Ваку-<br>умные дуговые генераторы плазмы | 2                                  | 8                                      |                                  |                       |
|                                           | Генераторы плазмы на базе магнетронных распылительных систем                        | 2                                  |                                        |                                  |                       |

| плазменных<br>систем | Процесс катодного распыления                   | 2  |    |  |
|----------------------|------------------------------------------------|----|----|--|
|                      | Зондовая диагностика плазмы                    | 2  |    |  |
| Диагностика          | Спектральная диагностика плазмы                | 2  | o  |  |
| плазмы               | СВЧ диагностика плазмы                         | 2  | 0  |  |
|                      | Лазерная диагностика низкотемпературной плазмы | 2  |    |  |
|                      | ИТОГО                                          | 40 | 48 |  |

## СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Избранные вопросы физики плазмы и её применения. Вып. 1: Учебное пособие./ Н.А. Кирнева, А.Б. Кукушкин, В.С. Лисица, А.С. Кукушкин, Ю.В. Мартыненко, В.Х. Алимов, В.П. Тараканов, Е.Г. Шустин / Под редакцией В.А. Курнаева./М.: НИЯУ МИФИ, 2017. 180 с. ISBN 978-5-7262-2272-1. Текст : электронный // [сайт]. URL :http://plasma.mephi.ru/ru/menu-obuchenie/uchebnye-posobiya.html(дата обращения: 11.04.2022). Режим доступа: по подписке.
- 2. Иванов В.А. Динамика плазмы в сильных СВЧ полях. Введение в курс. / М.: НИЯУ МИФИ, 2019 г. 377 с. ISBN 978-5-6042115-2-6. Текст : электронный // : [сайт]. URL : http://plasma.mephi.ru/ru/menu-obuchenie/uchebnye-posobiya.html (дата обращения: 11.04.2022). Режим доступа : по подписке.
- 3. Старостин, А. Н. Кинетика и термодинамика неидеальной плазмы: курс лекций / А. Н. Старостин. Москва: МЭИ, 2020. (Высшая школа физики) ISBN 978-5-383-01411-0. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785383014110.html (дата обращения: 11.04.2022). Режим доступа: по подписке.
- 4. Вуколов, К. Ю. Спектроскопия водородной плазмы: учебное пособие / К. Ю. Вуколов, А. М. Зимин, В. И. Тройнов. Москва: Издательство МГТУ им. Н. Э. Баумана, 2020. 126 с. ISBN 978-5-7038-5353-5. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785703853535.html (дата обращения: 11.04.2022). Режим доступа: по подписке.
- 5. Гришин, Ю. М. Расчет и исследование термодинамических свойств атомарной плазмы : учебно-методическое пособие / Ю. М. Гришин, С. В. Рыжков. 2-е изд. Москва : Издательство МГТУ им. Н. Э. Баумана, 2019. 47 с. ISBN 978-5-7038-5087-9. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785703850879.html (дата обращения: 11.04.2022). Режим доступа : по подписке.
- 6. Кузенов, В. В. Численное моделирование разреженной плазмы : учебное пособие / В. В. Кузенов, С. В. Рыжков. 2-е изд. Москва : Издательство МГТУ им. Н. Э. Баумана, 2019. 107 с. ISBN 978-5-7038-5088-6. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785703850886.html (дата обращения: 11.04.2022). Режим доступа : по подписке.
- 7. Берлин, Е. В. Индуктивные источники высокоплотной плазмы и их технологические применения / Берлин Е. В., Григорьев В. Ю., Сейдман Л. А. Москва: Техносфера, 2018. 464 с. ISBN 978-5-94836-519-0. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785948365190.html (дата обращения: 11.04.2022). Режим доступа: по подписке.
- 8. Старостин, А. Н. Кинетика и термодинамика неидеальной плазмы: курс лекций / А. Н. Старостин. Москва: МЭИ, 2020. (Высшая школа физики) ISBN 978-5-383-01411-0. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785383014110.html (дата обращения: 11.04.2022). Режим доступа: по подписке.

- 9. Овчинников, В. В. Технология дуговой и плазменной сварки и резки металлов: учебник / В. В. Овчинников, М. А. Гуреева. Москва: Инфра-Инженерия, 2021. 240 с. ISBN 978-5-9729-0540-9. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785972905409.html (дата обращения: 11.04.2022). Режим доступа: по подписке.
- 10. Родионов, Ю. А. Технологические процессы в микро- и наноэлектронике : учебное пособие / Родионов Ю. А. Москва : Инфра-Инженерия, 2019. 352 с. ISBN 978-5-9729-0337-5. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785972903375.html (дата обращения: 11.04.2022). Режим доступа : по подписке.
- 11. Пархоменко, Ю. Н. Выращивание кристаллов : выращивание кристаллических пленок методом магнетронного напыления : лаб. практикум / Ю. Н. Пархоменко и др. Москва : МИСиС, 2017. 54 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/Misis\_190.html (дата обращения: 11.04.2022). Режим доступа : по подписке.
- 12. Иванов, Н. Б. Нанотехнологии материалов и покрытий: учебное пособие / Иванов Н. Б., Покалюхин Н. А. Казань: КНИТУ, 2019. 236 с. ISBN 978-5-7882-2538-8. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785788225388.html (дата обращения: 11.04.2022). Режим доступа: по подписке.
- 13. Tichy, Milan. Plasma diagnostic by probes = Зондовая диагностика плазмы : study aid [Electronic resource] / M. Tichy, V. F. Myshkin (Mishkin); National Research Tomsk Polytechnic University (TPU) // 2 edit. 1 computer file (pdf; 3.0 MB). Tomsk : TPU Publishing House, 2016. Title screen. Текст на английском языке. Режим доступа: из корпоративной сети ТПУ. URL: .http://www.lib.tpu.ru/fulltext2/m/2016/m109.pdf.
- 14. Голант, В. Е. Основы физики плазмы: учебное пособие / В. Е. Голант, А. П. Жилинский, И. Е. Сахаров // 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2016. 448 с.: ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 435-438. Предметный указатель: с. 439-445. ISBN 978-5-8114-1198-6.
- 15. Дин, Джон Р. Индуктивно-связанная плазма: практическое руководство: пер. с англ. / Дж. Р. Дин. Санкт-Петербург: Профессия, 2017. 190 с.: ил. Библиогр. в конце гл. ISBN 978-5-91884-081-8.
- 16. Введение в физику пылевой и комплексной плазмы : учебное пособие / А. В. Ивлев [и др.]. Долгопрудный : Интеллект, 2017. 124 с.: ил. Библиогр. в конце гл. ISBN 978-5-91559-230-7.
- 17. Фортов, Владимир Евгеньевич. Термодинамика динамических воздействий на вещество / В. Е. Фортов. Москва : Физматлит, 2019. 142 с.: ил. Библиогр.: с. 127-141. ISBN 978-5-9221-1840-8.
- 18. Статистическая физика плотных газов и неидеальной плазмы / В. Е. Фортов, В. С. Филинов, А. С. Ларкин, В. Эбелинг. Москва : Физматлит, 2020. 672 с.: ил. Библиогр. в конце гл. ISBN 978-5-9221-1885-9.
- 19. Плазменные техника и технологии в ядерном топливном цикле: учебное пособие. Ч. 1 / Национальный исследовательский Томский политехнический университет; авт.-сост. А. Г. Каренгин [и др.]. Томск: Изд-во ТПУ, 2020. 149 с.: ил. Библиогр.: с. 143-147. ISBN 978-5-4387-0947-3.
- 20. Берлин, Евгений Владимирович. Индуктивные источники высокоплотной плазмы и их технологические применения / Е. В. Берлин, В. Ю. Григорьев, Л. А. Сейдман. Москва: Техносфера, 2018. 462 с.: ил. Библиогр.: с. 438-461. ISBN 978-5-94836-519-0.

- 21. Луценко, Юрий Юрьевич. Электродинамика высокочастотных разрядов емкостного типа : учебное пособие / Ю. Ю. Луценко; Национальный исследовательский Томский политехнический университет (ТПУ). Томск : Изд-во ТПУ, 2018. 142 с.: ил. Библиогр.: с. 131-139. Предм. указ.: с. 140.
- 22. Митришкин, Юрий Владимирович. Управление плазмой в экспериментальных термоядерных установках. Адаптивные автоколебательные и робастные системы управления / Ю. В. Митришкин. — Москва: Красанд, 2016. — 395 с.: ил. — Библиогр.: с. 371-390. — Предметный указатель: с. 391-395. — ISBN 978-5-396-00694-2.

### ОБРАБОТКА РЕЗУЛЬТАТОВ

Проверка правильности выполнения заданий всех частей производится автоматически по эталонам, хранящимся в системе тестирования.